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Table 3 Errors of frequencies and static de� ection
for carbon fabric composite [0]8T

Test, FDUB,a Error, FDUP,b Error,
Mode Hz Hz % Hz %

1 66.25 72.3 9.1 66.28 0.038
2 130 127.8 ¡1.7 129.8 ¡0.15
3 416.3 452.9 8.8 415.3 ¡0.25
4 518.8 539.2 3.9 520.0 0.25
5 990 1065.6 7.6 982.3 ¡0.7
Static de� ection, ¡0.68 ¡0.61 10.3 ¡0.677 ¡0.034
mm

aFrequencies and de� ection using baseline material properties.
bFrequencies and de� ection using prediction material properties.

the static de� ection errors during the evolution process. Table 3
shows the results of the natural frequencies and static de� ection
obtained using the � nite element method based on the identi� ed
material properties. Examination of the error between the experi-
mentaldataand thenumericaldata revealnoticeableimprovementin
accuracyof the presentprocedurefrom resultsbasedon the baseline
material properties.

V. Conclusions
An effective nondestructive procedure for the identi� cation of

material propertiesof compositestructureswas presented.The com-
bined method using neural networks and an evolution algorithmef-
fectivelyidenti� es the material properties.The neuralnetworkplays
the role of recognizing the input/output patterns and predicting an
accurate estimate of the actual material properties, and the evolu-
tion algorithm plays the role of providing the neural network with
quali� ed training patterns to enhance the performanceof the neural
network while reducing the computationalcosts.The proposedpro-
cedure is computationallyeconomic and simple to implement com-
pared with other sensitivity-based schemes because the approach
does not require the computation of the sensitivity coef� cients.
Numerical and experimental studies were made for the assess-
ment of the accuracy and effectiveness of the proposed procedure.
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W HILE studyingthe nonparallelaspectof this problem(Tyagi,
P. K., “Linear InstabilityofLaterallyStrained ConstantPres-

sure Boundary Layer,” M.Sc. Thesis, Dept. of Aerospace Engineer-

ing, Indian Inst.of Science,Bangalore,India,2001), we cameacross
an error in our recently reported result, which was based on the par-
allel � ow approximation.We sincerely regret such an unintentional
error.

The nonparallel linear instability equation is found to be the
same as that for the Blasius � ow. The momentum equation (6)
in our earlier analysis shows that, compared to two-dimensional
� ows, the Reynolds number is changed by the nondimensional
divergence/convergence factor, A=.A C x/; this factor is <1 and
>1 for diverging and converging � ows, respectively.Therefore, the
linear instability of a constant pressure diverging/converging � ow
will correspond to that for the Blasius � ow at a correspondingly
reduced/increased Reynolds number. That is, a diverging � ow will
be more unstable than the two-dimensional Blasius � ow. Similarly,
a converging � ow will be more stable than the two-dimensional
Blasius � ow.

Reanalysis results using the � nite element method based on the
identi� ed material propertieswere compared with the experimental
results.Based on the numerical and experimentalstudies conducted
herein, it can be concluded that more accurate dynamic and static
responsesof structurescan be evaluatedby numericalanalysisusing
the material properties identi� ed by the proposed procedure.
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